SPELEC is the world's only equipment in the market for performing SPECTROELECTROCHEMISTRY studies combining in only one box a Lightsource (UV-VIS-NIR wavelength range: 215-400 nm Deuterium, 360-2500 nm Tungsten halogen), a Bipotentiostat/Galvanostat (± 4 V DC potential range, ± 40 mA maximum measurable current) and a Spectrometer (UV-VIS wavelength range: 200-900 nm).

All the components are perfectly fitted and synchronized, thus offering for the first time in the market a fully integrated synchronized spectroelectrochemical instrument.

The equipment can also be used independently as a Spectrometer or as a Bipotentiostat/Galvanostat.

SPELEC is controlled by the New DROPVIEW SPELEC Software for Windows, which provides powerful functions such as:

- **Shutter** lamp control (automatic dark and reference)
- **Real Time** panel that collects the generated spectra not only during the electrochemical measurement but continuously at any time.
- Spectroscopic measurements shown in **Counts**, **Absorbance**, **Transmittance** or **Reflectance** during the Electrochemical process.
- Plot of Optical Spectra vs. Electrochemical Curves at a specified wavelength (Voltabsorptogram, Chronoabsorptogram or Derived ones).
- Plot overlay, peak integration, smoothing, subtraction, derivative curve, baseline fitting.
- **3D** plotting of curves.
- Export to .csv all synchronized data.

SPELEC can be used with electrochemical sensors or electrochemical cells with three electrodes: working electrode, reference electrode and auxiliary electrode. Also, it can be used in bipotentiostat mode, with a two-working electrodes system sharing the same reference electrode and auxiliary electrode.

SPELEC can be used with standard cuvette holders or spectroelectrochemistry cells, but also with the new innovative DropSens cells for Transmission or for Reflection spectroelectrochemistry experiments using screen-printed electrodes (transparent ITO or PEDOT electrodes for transmission experiments, or other conventional screen-printed electrodes for reflection experiments).
General Specifications

- **Power**: 12 V DC
- **PC interface**: USB
- **LED indicators**: Power
- **Dimensions**: 25 x 24 x 11 cm (L x W x H)
- **Weight**: 1950 g

Lightsource

- **Wavelength range**: 215-400 nm (deuterium); 360-2500 nm (tungsten halogen)
- **Stability**: ~1.0% peak-to-peak (over 4 hours) after 30-minute warm-up
- **Time to stable output**: 10 minutes (deuterium); 1 minute (tungsten halogen)
- **Ignition delay**: <2.0 seconds (delay for cold start-up may be longer)
- **Bulb life**: >1,000 hours @ 240 nm (time)
 - <50% @ 240 nm (decrease of intensity)
 - Continuous operation (testing conditions)
- **Fiber optic connector**: SMA 905

Spectrometer

- **Detector**: Linear silicon CCD array
- **Pixels**: 2048
- **Pixel size**: 14 μm x 200 μm
- **Pixel well depth**: ~62,500 electrons
- **Fiber optic connector**: SMA 905
- **Wavelength range**: 200 – 900 nm
- **Optical resolution**: ~0.3-10.0 nm FWHM
- **Signal-to-noise ratio**: 250:1 (at full signal)
- **A/D resolution**: 16 bit
- **Dark noise**: 50 RMS counts
- **Dynamic range**: 8.5 x 10^7 (system);
 - 1300:1 for a single acquisition
- **Integration time**: 1 ms to 65 seconds
- **Stray light**: ≤0.05% at 600 nm; ≤0.10% at 435 nm

Potentiostat/Galvanostat

- **Operating modes**: BiPotentiostat, Potentiostat, Galvanostat
- **DC-Potential range**: ±4 V
- **Current ranges (potentiostat)**: ±1 nA to ±10 mA (8 ranges)
- **Maximum measurable current**: ±40 mA
- **Potential ranges (galvanostat)**: ±100 mV, ±1 V (2 ranges)
- **Applied Potential Resolution**: 1 mV
- **Measured Current Resolution**: 0.025 % of current range (1 pA on lowest current range)
- **Applied Current Resolution**: 0.1 % of current output range
- **Measured Potential Resolution**: 0.012 % of potential range
- **Potential Accuracy**: ±0.2 %
- **Current Accuracy**: ±0.5 % of current range at 100 nA to 10 mA

Specifications are subject to change without previous notice